236 research outputs found

    Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive

    Get PDF
    Customization is a widely adopted practice on enterprise software applications such as Enterprise resource planning (ERP) or Customer relation management (CRM). Software vendors deploy their enterprise software product on the premises of a customer, which is then often customized for different specific needs of the customer. When enterprise applications are moving to the cloud as mutli-tenant Software-as-a-Service (SaaS), the traditional way of on-premises customization faces new challenges because a customer no longer has an exclusive control to the application. To empower businesses with specific requirements on top of the shared standard SaaS, vendors need a novel approach to support the customization on the multi-tenant SaaS. In this paper, we summarize our two approaches for customizing multi-tenant SaaS using microservices: intrusive and non-intrusive. The paper clarifies the key concepts related to the problem of multi-tenant customization, and describes a design with a reference architecture and high-level principles. We also discuss the key technical challenges and the feasible solutions to implement this architecture. Our microservice-based customization solution is promising to meet the general customization requirements, and achieves a balance between isolation, assimilation and economy of scale

    Context-driven Policies Enforcement for Edge-based IoT Data Sharing-as-a-Service

    Get PDF
    Sharing real-time data originating from connected devices is crucial to real-world intelligent Internet of Things (IoT) applications, i.e., based on artificial intelligence/machine learning (AI/ML). Such IoT data sharing involves multiple parties for different purposes and is usually based on data contracts that might depend on the dynamic change of IoT data variety and velocity. It is still an open challenge to support multiple parties (aka tenants) with these dynamic contracts based on the data value for their specific contextual purposes.This work addresses these challenges by introducing a novel dynamic context-based policy enforcement framework to support IoT data sharing (on-Edge) based on dynamic contracts. Our enforcement framework allows IoT Data Hub owners to define extensible rules and metrics to govern the tenants in accessing the shared data on the Edge based on policies defined with static and dynamic contexts. We have developed a proof-of-concept prototype for sharing sensitive data such as surveillance camera videos to illustrate our proposed framework. The experimental results demonstrated that our framework could soundly and timely enforce context-based policies at runtime with moderate overhead. Moreover, the context and policy changes are correctly reflected in the system in nearly real-time.acceptedVersio

    Multiscale theory of nonlinear wavepacket propagation in a planar optical waveguide

    Get PDF
    In this paper, the multiscale expansion formalism is applied for the first time, to our knowledge, in nonlinear planar optical waveguides. This formalism permits us to describe the linear and nonlinear propagation for both transverse electric and transverse magnetic modes. The modal field distributions and the nonlinear coefficient in the nonlinear Schrödinger equation are highlighted

    Polarization switching in a planar optical waveguide

    Get PDF
    The multiscale expansion formalism is applied to the study of nonlinear planar optical waveguides. It allows us to describe the linear and nonlinear propagation for both transverse electric and transverse magnetic modes, and the interaction between them. An accurate computation of the nonlinear self- and cross-phase modulation coefficients allows one to give account of the polarization switching which has been observed experimentally

    Comparing Traditional Body Mass Index and Joslin Diabetes Center’s Asian Body Mass Index in Predicting Self-Report Type 2 Diabetes.

    Get PDF
    This study examined the predictability of traditional Body Mass Index standards and the Joslin Diabetes Center’s recommended BMI standards for Asian Americans. A sample of 2973 adult Asian Americans aged 45 and older from the 2009 California Health Interview Survey (CHIS) was used. This sample consists of 12.25% of respondents with type 2 diabetes and 87.75% that had neither type 2 or any types of diabetes. Logistic regression was used to estimate the predictability of two the BMI standards and to test for the interaction effect of BMI standards and sex in predicting type 2 diabetes. The results revealed that both traditional and Joslin Diabetes Center’s recommended standards had similar predictability of types 2 diabetes. Both BMI standards of overweight and obesity had a greater association with type 2 diabetes for men than for women. That is, given a similar level of BMI, men tend to report a greater prevalence of type 2 diabetes than women. These findings support caution in changing BMI cut-offs for Asian Americans, and highlight the potential limitations of using BMI as a measure of risk for diabetes in this population

    Pharmacist-Led Intervention to Enhance Medication Adherence in Patients With Acute Coronary Syndrome in Vietnam:A Randomized Controlled Trial

    Get PDF
    Background: Patient adherence to cardioprotective medications improves outcomes of acute coronary syndrome (ACS), but few adherence-enhancing interventions have been tested in low-income and middle-income countries. Objectives: We aimed to assess whether a pharmacist-led intervention enhances medication adherence in patients with ACS and reduces mortality and hospital readmission. Methods: We conducted a randomized controlled trial in Vietnam. Patients with ACS were recruited, randomized to the intervention or usual care prior to discharge, and followed 3 months after discharge. Intervention patients received educational and behavioral interventions by a pharmacist. Primary outcome was the proportion of adherent patients 1 month after discharge. Adherence was a combined measure of self-reported adherence (the 8-item Morisky Medication Adherence Scale) and obtaining repeat prescriptions on time. Secondary outcomes were (1) the proportion of patients adherent to medication; (2) rates of mortality and hospital readmission; and (3) change in quality of life from baseline assessed with the European Quality of Life Questionnaire - 5 Dimensions - 3 Levels at 3 months after discharge. Logistic regression was used to analyze data. Registration: ClinicalTrials.gov (NCT02787941). Results: Overall, 166 patients (87 control, 79 intervention) were included (mean age 61.2 years, 73% male). In the analysis excluding patients from the intervention group who did not receive the intervention and excluding all patients who withdrew, were lost to follow-up, died or were readmitted to hospital, a greater proportion of patients were adherent in the intervention compared with the control at 1 month (90.0% vs. 76.5%; adjusted OR = 2.77; 95% CI, 1.01-7.62) and at 3 months after discharge (90.2% vs. 77.0%; adjusted OR = 3.68; 95% CI, 1.14-11.88). There was no significant difference in median change of EQ-5D-3L index values between intervention and control [0.000 (0.000; 0.275) vs. 0.234 (0.000; 0.379); p = 0.081]. Rates of mortality, readmission, or both were 0.8, 10.3, or 11.1%, respectively; with no significant differences between the 2 groups. Conclusion: Pharmacist-led interventions increased patient adherence to medication regimens by over 13% in the first 3 months after ACS hospital discharge, but not quality of life, mortality and readmission. These results are promising but should be tested in other settings prior to broader dissemination

    Backscatter-assisted data offloading in OFDMA-based wireless powered mobile edge computing for IoT networks

    Get PDF
    Mobile edge computing (MEC) has emerged as a prominent technology to overcome sudden demands on computation-intensive applications of the Internet of Things (IoT) with finite processing capabilities. Nevertheless, the limited energy resources also seriously hinders IoT devices from offloading tasks that consume high power in active RF communications. Despite the development of energy harvesting (EH) techniques, the harvested energy from surrounding environments could be inadequate for power-hungry tasks. Fortunately, Backscatter communications (Backcom) is an intriguing technology to narrow the gap between the power needed for communication and harvested power. Motivated by these considerations, this paper investigates a backscatter-assisted data offloading in OFDMA-based wireless-powered (WP) MEC for IoT systems. Specifically, we aim at maximizing the sum computation rate by jointly optimizing the transmit power at the gateway (GW), backscatter coefficient, time-splitting (TS) ratio, and binary decision-making matrices. This problem is challenging to solve due to its non-convexity. To find solutions, we first simplify the problem by determining the optimal values of transmit power of the GW and backscatter coefficient. Then, the original problem is decomposed into two sub-problems, namely, TS ratio optimization with given offloading decision matrices and offloading decision optimization with given TS ratio. Especially, a closedform expression for the TS ratio is obtained which greatly enhances the CPU execution time. Based on the solutions of the two sub-problems, an efficient algorithm, termed the fast-efficient algorithm (FEA), is proposed by leveraging the block coordinate descent method. Then, it is compared with exhaustive search (ES), bisection-based algorithm (BA), edge computing (EC), and local computing (LC) used as reference methods. As a result, the FEA is the best solution which results in a near-globally-optimal solution at a much lower complexity as compared to benchmark schemes. For instance, the CPU execution time of FEA is about 0.029 second in a 50-user network, which is tailored for ultralow latency applications of IoT networks

    Continuous Deployment of Trustworthy Smart IoT Systems.

    Get PDF
    While the next generation of IoT systems need to perform distributed processing and coordinated behaviour across IoT, Edge and Cloud infrastructures, their development and operation are still challenging. A major challenge is the high heterogeneity of their infrastructure, which broadens the surface for security attacks and increases the complexity of maintaining and evolving such complex systems. In this paper, we present our approach for Generation and Deployment of Smart IoT Systems (GeneSIS) to tame this complexity. GeneSIS leverages model-driven engineering to support the DevSecOps of Smart IoT Systems (SIS). More precisely, GeneSIS includes: (i) a domain specific modelling language to specify the deployment of SIS over IoT, Edge and Cloud infrastructure with the necessary concepts for security and privacy; and (ii) a [email protected] engine to enact the orchestration, deployment, and adaptation of these SIS. The results from our smart building case study have shown that GeneSIS can support security by design from the development (via deployment) to the operation of IoT systems and back again in a DevSecOps loop. In other words, GeneSIS enables IoT systems to keep up security and adapt to evolving conditions and threats while maintaining their trustworthiness.The research leading to these results has received funding from the European Commission’s H2020 Programme under grant agreement numbers 780351 (ENACT)
    • …
    corecore